
RESOURCEFUL ENGINEERING

MOBILE
SYSTEM
DESIGN

Become a better app developer using
mental models that apply to the real world

TJEERD IN ’T VEEN

Mobile System Design: Resourceful Engineering

1 Preface

There’s no doubt that the term “System Design” has been popping upmore andmore in themobile
engineering industry.

Whenmobile engineers apply for jobs, System Design is becoming more of a typical and standard part
of the interview process. Many engineers may be familiar with the process of stumbling upon System
Design books, only to discover that they cater to the needs of backend developers.

Unfortunately, the resources available specific to supporting mobile developers still remain limited
when it comes to Mobile System Design.

In addition, although wemay have a general working definition of system design for backend devel-
opment, there lacks a universally conferred understanding of what we actually mean when we say,
“Mobile System Design.”

When we lack aggregate knowledge on the subject matter and pair this with fuzzy definitions, we
decrease our likelihood of success as mobile developers.

Furthermore, in the mobile industry, there is a strong focus on the latest trends, delivering the shiniest
UI, and engaging in the favorite pastime of squabbling amongst each other about which UI architecture
is the “best.”

But, in taking a step back from this all, our emphasis and attention could be more e�ectively directed
towards improving our fundamental skills. Skills that are more timeless. Skills that go deeper, beyond
beginner tutorials or fleeting trends.

This is what I hope to change with this book.

When we produce small apps as indie developers, we don’t always require a technical design upfront.
But, for regular jobs where you work in teams, mobile apps are typically larger and absolutely more
complicated.

As soon as apps growmore features and becomemore complex, strong fundamental skills become
ever more crucial. This is where knowledge about Mobile System Design is imperative and e�ective
especially given the ever-changing landscape and fast-paced environment of mobile engineering.

In my experience as an iOS Tech Lead at ING international Bank and sta� engineer at Twitter (before it
became X), I noticed certain patterns where developers – myself included – find it increasingly more
di�icult to deliver features as soon as apps grow in size and complexity.

To handle complexity, developers look for crutches, common patterns, or architectures to wriggle
themselves out of problematic situations.

In reaching for heuristics, or rules of thumb, many developers o�en rely on SOLID principles. However,
in going against the grain, I find it too outdated to keep up with modern demands. Unless you’re

i

Mobile System Design: Resourceful Engineering

really into subclassing and using interfaces to over-abstract your code, SOLID principles should be set
aside.

Another related issue with crutches is the fact that somemay call their own code “clean code”, without
actually checking if their coworkers find it readable or easy to comprehend.

Theprogrammingworld is rapidly evolving. Today, so�waredesign favors compositionover subclassing
to handle complexity and we are entering the realm of using declarative frameworks to create UI, with
mostly positive results. This a�ects how we design our apps.

Onemain reason this book exists is to assist with job interview preparedness. At the time of writing,
the market took a big downturn and many people, unfortunately and unexpectedly, lost their jobs.
When later churning through repeated rounds of interviews, many have realized that System Design
has become an integral step in the interview process.

The aim of this book is to provide people with the necessary skills and knowledge to help increase
their chances of getting the job that they really want.

However, this book isn’t aimed solely towards mobile engineers taking part in future interviews.
This book is also geared towards supporting and improving day-to-day work activities, given that
strong technical design skills have the capacity to make positive, longstanding impact on one’s work
experiences.

Luckily, I was in a unique position tomake this book a reality based onmypast professional endeavours.
I wrote a technical book before, Swi� in Depth, published by Manning and have worked onmultiple
large-scale mobile applications for large-scale international businesses situated in Europe and North
America. I have been amobile developer for nearly 14 years, built features for over 24 years on di�erent
platforms, and I have been on both ends of the job interview process for mobile developers.

I wanted to take my years of experience and consolidate this plethora of knowledge into insights on
mobile app development that can be accessibly shared with others. In light of these e�orts, I’m now
happy to say that there finally exists a Mobile System Design book available for mobile engineers.

That means that this book isn’t a quick bite-sized snack. It does not contain quick-and-dirty tips that
youmay o�en find in blog posts or the many beginner-focused tutorials. There is a time and place for
that, but that’s not this book.

In this book, you will do what you probably are already doing: Making features and apps. But, we are
going to go deeper at every step to refine your skills.

The core message of this book is that you become a better developer by working on your fundamental
skills. Forget the fancy tools and frameworks for a moment, and let’s get back to the basics. The
takeaways from this book will last your entire career andmake you a better developer in many critical
aspects.

ii

Mobile System Design: Resourceful Engineering

One way that this book stands out is that it keeps team dynamics in mind. It does not solely focus on
the technical challenges. For instance, deciding what to prioritize o�en isn’t a coding question. It’s
about how tomake a teammove faster, not just yourself. As you’ll discover, sometimes focusing on the
boring parts canmake your team deliver faster as a whole.

This book is opinionatedwith a strong focus on keeping it simple. The bookwill o�en use one approach
instead of showing the pros and cons for every approach. The benefit of doing so is that it allows us to
go in-depth about certain topics. Expect to disagree sometimes. This is normal and I encourage you to
be critical. But please, try to be open and see if you can learn something in every step of the process.

A goal of mine was to avoid making this book too high-level, focusing only on diagrams. It’s a good
idea to design your so�ware with diagrams, but it’s not necessarily enough.

When you write the actual code, you think of problems in more detail. That’s when we realize that
high-level diagrams don’t always reflect reality. Designing your app is important, but being able to
go in-depth and identify issues in your design is part of that. Hence why this book will o�en go from
high-level design, to the nuts and bots on a code-level, and back again.

I hope this book can help you improve your career prospects and your confidence as amobile developer
and I hope you have a lot of fun and insights reading it.

1.1 Acknowledgements

I want to give special thanks to Dimitar Gyurov, Marie Denis, Elvirion Antersijn and Nicole Yarroch for
reviewing the chapters. Thanks to your help, I made chapters more accessible and clear.

I want to give special thanks toDonnyWals for beingmy soundingboard. You gavememoreperspective
on the same problems that we run into during day-to-day mobile work.

Thank you, Leo G Dion for making people aware of my book and being so supportive of it.

Thank you, Hugo Visser for giving me deeper Android insights.

I want to give thanks to Martin Lechner and Cristian Caroli for their support while writing this book.

And special thanks to Jenika, my wife, for being so supportive and patient while this book kept me
mentally occupied.

iii

Mobile System Design: Resourceful Engineering

1.2 This book is an early access edition; What to expect

Thank you so much for your early interest in this book. You’ll be one of the first people to read and
absorb the concepts shared in here.

Before you continue, I’d like to share a few things to keep in mind since this book is in beta.

First, I will addmore chapters as soon as they come out. Expect book updates with new sections, better
phrasing, updated code listings, updated diagrams, and so on.

Expect typos, odd phrasing, and code-listings to be cut o� awkwardly. Because the copy-editing
happens a�er all writing is finished.

The chapters aren’t set in stone, either. Sections, paragraph, and sometimes even entire chapters
might get updates.

For example, maybe a section will be rewritten because it’s not clear enough. Or maybe an unwritten
chapter is replaced by a di�erent one.

The chapters that are already written won’t just disappear. But the unwritten chapters are more
susceptible to change to help the flow of the book. This is a normal process of writing a book.

And last, the illustrations are not all final.

If you find any other issues, errors, or any wrong statements, then feel free to reach out to
tjeerd@swi�indepth.com, or DMme on Twitter/X @tjeerdintveen.

When chapters or sections aren’t clear enough, please let me know! I will gladly use your feedback to
improve this book.

Enjoy!

– Tjeerd

iv

Contents

1 Preface . i
1.1 Acknowledgements . iii
1.2 This book is an early access edition; What to expect iv

1 About this book 1
1.1 System Design versus So�ware Architecture . 2
1.2 Why is System Design important? . 2
1.3 Common challenges for mobile engineers . 3

1.3.1 Rapidly changing environment . 4
1.4 Why does this book exist? . 4
1.5 Why this book’s subtitle is called ’Resourceful Engineering’ 5
1.6 What to expect during Mobile System Design interviews 6
1.7 What this book is not . 7

1.7.1 This book is not a traditional programming book 8
1.8 This book is about timeless principles, not trends . 9
1.9 This book is for iOS, Android, andmulti-platform developers alike 9
1.10 Is this book for you? . 10
1.11 How this book works . 10

1.11.1 A strong focus on building the right things . 10
1.12 The chapters . 11

1.12.1 Chapter 1: About this book . 11
1.12.2 Chapter 2: Turning a briefing into a strong plan 11
1.12.3 Chapter 3: Holistic-Driven Development; Turning a plan into code 11
1.12.4 Chapter 4: System-wide testing; Delivering higher quality apps 12
1.12.5 Chapter 5: Cross-domain testing; Testing more with less e�ort 12
1.12.6 Chapter 6: Dependency injection foundations 12
1.12.7 Chapter 7: Sane dependency injection without fancy frameworks 13
1.12.8 Chapter 8: Dependency Injection on a larger scale 13
1.12.9 Chapter 9: UI frameworks, architectures, and supporting multiple products . . 13
1.12.10 Chapter 10: Delivering reusable UI components; The art of decomposing a design 14
1.12.11 Upcoming chapters . 14

v

Mobile System Design: Resourceful Engineering

1.13 About the author . 15

2 Turning a briefing into a strong plan 17
2.1 The briefing . 18

2.1.1 An initial impression . 20
2.2 Evaluating common approaches . 20

2.2.1 Start with UI? . 21
2.2.2 A data-focused approach? . 21
2.2.3 Creating an app-skeleton or flow-skeleton? 22
2.2.4 Starting by making components or features? 22
2.2.5 Drawing a diagram? . 22
2.2.6 Decide on an architecture? . 23
2.2.7 A recommended approach . 24

2.3 Sketching out a landscape . 24
2.3.1 Everything is connected to a course . 26
2.3.2 How far do we decompose? . 27

2.4 Uncovering secondary requirements . 28
2.5 Working with Designers; Getting secondary features 29

2.5.1 Whether or not a design is the "law" . 30
2.5.2 What is ’pixel perfect’, really? . 30
2.5.3 Designs o�en encompass best-case scenarios 31
2.5.4 Not everything has equal priority . 31
2.5.5 Verify the existence of pre-existing components 32
2.5.6 Ask general UI questions . 33
2.5.7 Ask functionality-related questions . 33
2.5.8 Talk about error handling . 35
2.5.9 Talk about time-investments and start thinking in a less binary fashion 35
2.5.10 Giving feedback to the designer . 36
2.5.11 Updating the landscape . 36
2.5.12 A fast app is key . 36
2.5.13 Scheduler . 37
2.5.14 Deep Linking . 38

2.6 Aligning with backend engineers . 38
2.6.1 Align on about User sessions, environments, tokens, and timeouts 39
2.6.2 Align on consolidating network calls . 39
2.6.3 Be on the same page with errors . 40
2.6.4 It’s okay to deviate from backend custom error codes 40
2.6.5 Youmight be the backend guinea-pig . 41

vi

Mobile System Design: Resourceful Engineering

2.6.6 Read code from other client implementations 41
2.6.7 Consider push notifications . 42
2.6.8 Feature-specific questions . 42
2.6.9 Updating the landscape with backend requirements 43

2.7 You are the link between backend and design . 43
2.8 Closing thoughts . 44
2.9 The takeaways . 44

3 Holistic-Driven Development; Turning a plan into code 47
3.1 Be able to handle unknowns . 48
3.2 A quick note about interfaces and APIs . 48
3.3 The relationship between graph nodes and code . 49
3.4 The process of holistic driven development . 50
3.5 Implementing the Course domain . 52

3.5.1 Course and Tutor . 54
3.5.2 TODOItem . 55
3.5.3 Placeholder values . 56
3.5.4 Modeling CalendarEvent . 57
3.5.5 Defining CourseAPI . 58

3.6 The Store component . 60
3.6.1 Starting from the call-site of CourseAPI . 60
3.6.2 The Store implementation . 62
3.6.3 Designing the get() method signature . 62
3.6.4 Implementing the get() method . 64
3.6.5 Store is implemented naïvely on purpose . 64
3.6.6 Placeholder implementations lower priorities 65
3.6.7 Trade-o�s whenmaking a component reusable 65

3.7 Performing a little testrun andmoving forward . 66
3.8 Focusing on UI vs other implementations . 68

3.8.1 Focusing on UI . 68
3.8.2 Going deeper . 69
3.8.3 A team setting . 70

3.9 Implementing on a deeper level . 71
3.9.1 Defining new types . 73
3.9.2 Optimizing CourseAPI . 74

3.10 End result . 75
3.11 Reflecting on holistic driven development . 75

3.11.1 Holistic-Driven Development brings confidence to move forward 76

vii

Mobile System Design: Resourceful Engineering

3.11.2 Lightweight restructuring . 76
3.11.3 Context switching and delegation . 77
3.11.4 Top-down versus bottom-up . 77
3.11.5 We delay writing tests . 78
3.11.6 Why we don’t design with interfaces or protocols instead 78
3.11.7 A note on placeholders . 79

3.12 The takeaways . 80

4 System-wide testing; Delivering higher quality apps 81
4.1 Testing less granularly . 81
4.2 Damage control and damage prevention . 82

4.2.1 Damage control . 83
4.3 Mocking higher in the stack . 84

4.3.1 Isolating VideoClient . 85
4.3.2 Introducing mocks . 86
4.3.3 Setting up a testing environment . 88
4.3.4 Downsides of mocking higher in the stack . 89

4.4 Mocking lower in the stack . 89
4.4.1 Finding the smallest surface to mock out . 90
4.4.2 Setting up the API dependency . 91
4.4.3 Trade-o�s . 93
4.4.4 Mocking for expensive operations . 93
4.4.5 Accepting a closure as a dependency . 95
4.4.6 The end result . 96

4.5 Making system-wide testing more smooth . 96
4.5.1 Dealing with boilerplate . 97
4.5.2 Reducing boilerplate in production code . 98
4.5.3 Reducing boilerplate in tests . 100
4.5.4 Dealing with slower-running tests . 101
4.5.5 Consider using file systems in your tests . 101
4.5.6 Dealing with untestable code . 102
4.5.7 Distance between tests and code . 102

4.6 What is a unit anyway? . 102
4.7 What we covered . 104

5 Cross-domain testing; Testingmore with less e�ort 105
5.1 Avoiding a redundant testing surface . 106
5.2 Themost important domain lives up top . 107

viii

Mobile System Design: Resourceful Engineering

5.3 Be aware of volatile code . 108
5.4 Reason about classes the same way as you do with domains 109
5.5 Test the foundational domains as a next priority . 109
5.6 Trade-o�s when testing lower domains later . 110
5.7 Domains in the context of a larger app . 110

5.7.1 When we are working in the "highest" domain 112
5.7.2 Domains are only responsible for their own functionality 113

5.8 What we covered . 114

6 Dependency injection foundations 115
6.1 Vanilla code versus third-party frameworks . 116

6.1.1 The cost of third-party solutions . 117
6.2 Why we need Dependency Injection in the first place 117
6.3 Testing andmocking . 119

6.3.1 Dependency injection, testing, and interfaces 120
6.3.2 The purpose of an interface isn’t instantly clear 122

6.4 Compiler-flags and environments . 122
6.5 Singletons, or "What if there’s only one instance of something?" 123

6.5.1 Setting up a singleton . 124
6.5.2 Singletons are o�en abused as shortcuts . 126
6.5.3 Solving problems for the future . 126
6.5.4 Singletons hinder modularization . 127
6.5.5 Passing values across modules instead . 128
6.5.6 Singletons, thread-safety, and global state . 130
6.5.7 A thread-safe singleton is not enough . 131
6.5.8 Removing a singleton dependency . 131
6.5.9 Use-cases for singletons . 133
6.5.10 Passing values pays o� . 133

6.6 What we covered . 133

7 Sane dependency injection without fancy frameworks 135
7.1 A naïve solution . 136
7.2 Deeply nested dependencies; The ABC problem . 137

7.2.1 Flipping the hierarchy inside out . 138
7.2.2 Setting up the environment . 139
7.2.3 Updating CourseAPI . 140

7.3 Compiler-flags on the outer edge of your application 141

ix

Mobile System Design: Resourceful Engineering

7.4 The secret sauce . 142
7.4.1 Breaking the ABC rule . 143

7.5 Growing the app . 144
7.5.1 Extending the graph with more classes . 145
7.5.2 Flipping the graph . 146
7.5.3 A larger ABC problem in code . 147

7.6 When dependencies aren’t available . 148
7.6.1 A payment flow . 148
7.6.2 Optional dependencies . 150

7.7 Lazy dependencies . 151
7.7.1 Expressing a factory in code . 151
7.7.2 Implementing the factory . 153

7.8 Closing thoughts . 155
7.9 What we covered . 156

8 Dependency Injection on a larger scale 157
8.1 Considering a common approach . 158
8.2 Handling larger dependency trees . 159

8.2.1 Reducing a sub-tree . 159
8.2.2 Settings as a setup location . 161
8.2.3 Expressing the dependencies in code . 162
8.2.4 Grouping the setupmethods . 165

8.3 Dependencies across an entire app . 166
8.3.1 Multiple setup locations . 166
8.3.2 Downsides of our approach . 167

8.4 Passing dependencies across a modular app . 168
8.4.1 A modular app . 169
8.4.2 A spider in the web . 170
8.4.3 Reducing tight-coupling betweenmodules . 171
8.4.4 Expressing a solution in code . 172
8.4.5 The ABC problem appears again . 173
8.4.6 Solving the ABC problem across module bounds 174
8.4.7 A cleaner graph . 176
8.4.8 Reducing tight-coupling for foundational modules 177

8.5 Closing thoughts . 180
8.5.1 Trade-o�s . 180

8.6 What we covered . 181

x

Mobile System Design: Resourceful Engineering

9 UI frameworks, architectures, and supportingmultiple products 183
9.1 UI Principle 1: Defer implementing the UI . 184
9.2 UI Principle 2: UI architectures come and go . 185

9.2.1 View UI architectures as alignment tools . 186
9.2.2 There is no "perfect" UI architecture . 186
9.2.3 UI Architectures and trends . 187
9.2.4 Architectures can be formed over time . 188

9.3 UI Principle 3: Imagine your feature as a Command Line Tool 188
9.3.1 A feature on the command line . 189
9.3.2 Lean UI, Fat business layer . 190
9.3.3 Fat business domain, lean UI domain . 191

9.4 UI Principle 4: The UI does not dictate architectures in business domains 192
9.4.1 Supporting a variety of products and architectures 193

9.5 What we covered . 195

10 Delivering reusable UI components; The art of decomposing a design 197
10.1 UI Principle 5: Name a component a�er what it is, not how you use it 198

10.1.1 Making a reusable component . 199
10.1.2 Type name versus instance name . 200
10.1.3 Expressing reusable component in code . 202
10.1.4 The road of becoming too specific . 203
10.1.5 A practical counterpoint . 204
10.1.6 A higher abstraction . 204
10.1.7 Abstractions via aliasing . 205

10.2 Creating the other view primitives . 206
10.3 UI Principle 6: Don’t name a view a�er its styling . 208

10.3.1 Alternative names . 210
10.4 UI Principle 7: Favor composition over smart views 210

10.4.1 Decomposing the TODO list . 212
10.4.2 Domain versus view . 213
10.4.3 Handling inconsistent UI . 213
10.4.4 Breaking a view down into smaller views . 214
10.4.5 Avoid delivering for hypothetical scenarios . 216
10.4.6 Button views . 216

10.5 UI Principle 8: Styling comes later . 217
10.5.1 Managing expectations . 218

10.6 The current UI landscape . 218
10.7 What we covered . 219

xi

Mobile System Design: Resourceful Engineering

11 Views, components, bindings, and screens 221

12 Nurturing a Design system 223

13 UI navigation flows 225

14 Designingmodular apps 227

15 Testing strategies 229

16 Applying themethodologies to your ownwork 231

xii

1 About this book

If you ask mobile engineers what Mobile System Design is, you’ll get a wild variety of di�erent an-
swers.

Some might say it’s about UI Flows, others about job interviews, or they will mention it’s about UI-
architectures. Yet, others may tell you it’s about domain modeling or dependencies, or they’ll say it’s
about a modular codebase.

The term “System Design” is usually reserved for backend engineers and o�en associated with job
interviews. During these interviews, a backend engineer would design a technical solution to solve a
problem that the interviewer gives.

For example, an interviewer might ask a backend-engineer: “Howwould you implement a livestream
chat-service?”. The candidate draws a graph of the services needed and explains how data flows
between them. They answer questions about scaling up, storage, redundancy, andmore..

Sometimes, the candidate would write (pseudo)code to explain the required types to make it all work
together.

In themobile world, we see an increasing amount of System Design interviews pop up, too. Yet the
problems di�er from themore traditional System Design challenges given to backend engineers.

During a System Design interview for mobile engineers, the questionmight be similar: “Howwould you
build a feature that does X”.

But you’d be focusing on designing the architecture for a client app with mobile-specific constraints,
such as, but not limited to:

• Designing complex flows.

• Making a feature work o�line, yet keep data in sync with the back-end.

• How to avoid hammering the servers while downloading large amounts of data.

• Handling networking and local cache invalidation.

• Making a feature reusable across multiple devices and platforms.

1

Mobile System Design: Resourceful Engineering

Despite the association, system design ismore than just a step during the job interview process. It’s
about the ability to create a solution to cater to the requirements of a business. Both at work and in
job interviews.

A system can be small. Perhaps your work today is making a tiny app with three screens. But it can
also be gigantic; Some apps are a multi-modular codebase where hundreds of developers are working
on the same codebase and have to share a lot of libraries together.

1.1 System Design versus So�ware Architecture

The term "System Design" is nebulous, because it touches uponmany overlapping so�ware design
practices that fall under the umbrella of So�ware Architecture, such as: domainmodeling, architectural
patterns, API design, or component design.

With this book, we try to define System Design as designing a technical solution to satisfy business
requirements.

To put it simply: You receive requirements, and you have to figure out what components to make and
how they work together to solve the business’ needs.

Specifically in this book, we narrow it down to business requirements, since it mostly reflects require-
ments found at work. As opposed to any so�ware requirements, such as hobby projects and toy apps
where a lot more rules can be broken.

Another way to think about System Design is coming up with the components and their APIs to solve a
problem.

1.2 Why is System Design important?

So�ware is expensive.

It’s important to reduce the time or sprints of a project, and having the ability to adapt swi�ly to new
demands, features, and requirements. Even being able to even delete entire chunks of your application
is crucial.

Modern so�ware moves fast, andmobile apps especially so. On top of a rapidly-changing platform, we
have to be able to adjust and deliver a product to help solve our customer’s needs.

We have to be ready for any changes andwe should aim to avoidwasting time building features nobody
uses.

2

Mobile System Design: Resourceful Engineering

But being nimble is not always possible when we’re working in a rigid system, or a codebase that easily
breaks.

Mobile SystemDesign helps ensure our apps are of high quality, developedquickly, and canbe adjusted
where necessary while managing a growing codebase.

1.3 Common challenges for mobile engineers

Somemight quip that mobile apps are JSON viewers—of which I am also guilty when feeling snarky.
Once you go beyond toy-apps however, system design and a strong architecture do become critical for
a mobile app.

Mobile development poses interesting challenges. As a team, you’ll be shipping one binary. Your focus
is more on local architectures and delivering code that’s shared by the entire team.

The larger the app and teams, the more teams have to think about—and struggle with—topics such
as:

• Delivering shared components that need to meet company-wide requirements.

• Taming abstractions and keeping complexity low.

• Over-engineering.

• Toomuch, or too little, code duplication.

• The danger of a convoluted codebase.

These problems are not unique to mobile development. It is, however, a situationmobile engineers
quickly run into because they are shipping one binary together with all features combined; As opposed
to, say, a web-team that can ship features independently.

Youmight choose to decouple features into their own namespaces, packages, libraries, SDK’s, frame-
works, andmodules; However, all these pieces will still have to get along, since you’ll be glueing all
these “independent” parts together as a whole in the shape of an app.

O�en, these independent parts are relying on components shared by all other features, such as UI com-
ponents or shared business logic; If you’re not careful, changing one element in a shared component
can a�ect all features in the entire app for all mobile teams.

Keep in mind that there is no shame in relying on shared code either. When implemented well, it can
give you engineering superpowers; Such as implementing a sharedmodule that contains a UI Design
System. This systemwould contain all the components that power up the features wemake, saving a
team tremendous time.

3

Mobile System Design: Resourceful Engineering

To get more autonomy, developers might choose to split up features intomodules. Theymight wonder
how many modules an app needs and how much they should rely on interfaces or even interface-
modules. Splitting up your codebase into modules increases the need for strong API design and
thinking a bit di�erently about components. When poorly implemented, a modular design will even
backfire.

Whichever way you go about it; As mobile engineers we have to find a balance between shared compo-
nents, modules, abstractions, architectures, handling dependencies, and everything in-between. All
the way from amonolithic app to a giant modular codebase. This is where this book can assist you.

1.3.1 Rapidly changing environment

Another challenge that mobile engineers face is that the mobile industry moves fast.

New devices get released every year, andmajor OS updates bring new UI and exciting functionalities.
Sometimes, we even get to deliver products for entirely new platforms, such as watches, TV’s, or VR
glasses.

On top of dealing with foundational changes, businesses constantly require changes to serve cus-
tomers.

As a result, a mobile codebase is ever-moving, and frequently shi�ing.

On average, the UI aspect of mobile apps changes more o�en than foundational code for app develop-
ers. Because mobile apps are customer-facing and we have to keep up with the latest advances that
come with OS updates.

Conversely, code that’s more foundational, such as making a network calls or storing locally protected
data, can keep working regardless of the UI solution.

Since the UI layer tends to be more volatile for mobile developers, the book focuses on building a firm
foundation. This way, you’re ready to handle many changes to UI. Such as new OS updates, changing
UI architectures, adapting to UI frameworks, and you’ll even be ready for entirely di�erent products;
Such as tablets, watches, TV platforms, or VR.

1.4 Why does this book exist?

This book is an answer to mobile engineers who struggle with repeated and common issues during the
mobile development process.

4

Mobile System Design: Resourceful Engineering

Over time, being asked to implement a feature transforms from “Sure! I’ll have it done by this a�ernoon!”
to “I’d first have to check with Steve but he’s on vacation and we first need to refactor this other piece of
code, but that code is in the middle of a migration so I can only make a temporary fix.”

Or: “I can’t move forward because we rely on version 2 of this third-party SDK, and we need version 3.
But, version 3 has a singleton that makes it almost impossible to test this flow, so we need to wait for a
change”.

These issues are never a specific problem with a clear silver bullet answer. “Oh, if only we had used
reactive programming, our app would be so much easier to work with!”.

Unfortunately, challenges with mobile development are more nuanced.

Many engineers’ struggles are a buildup of smaller issues that are introduced during the development
process.

Individually, these issues aren’t a big deal and easily slip under the radar during code reviews. A
little abstraction here, a small “temporary” fix there, some duplicate code here. But now, these tiny
problems turn into a tedious codebase that’s as much fun to work in as trimming a cat’s toenails.

It’s death by a thousand cuts.

Development-speed slows down, tech-debt increases and people might start saying the R-word (refac-
toring), worrying managers who’d rather have engineers focus their time on shipping features.

In this book, we’ll make smarter, more robust decisions that will lower the chances of our codebase
turning into a “big ball of mud”.

NOTE: “Big ball of mud” is a term for complex technology that lacks structure and design. The term was
popularized in Brian Foote and Joseph Yoder’s 1997 paper of the same name.

1.5 Why this book’s subtitle is called ’Resourceful Engineering’

Looking up the definition of resourceful, we get:

as in skilled. “able to deal well with new or di�icult situations and to find solutions to problems”

• merriam-webster.com

“Someone who is resourceful is good at finding ways of dealing with problems.”

• collinsdictionary.com

“able to deal skillfully and promptly with new situations, di�iculties, etc.”

• dictionary.com

5

Mobile System Design: Resourceful Engineering

As a developer at a company, you receive requirements; you don’t have the full information, and yet
you must deliver. Even when you get an extensive list of requirements andmany designs, there always
are unknowns. You’ll have to be ready for that.

Resourcefulness is something you are yourself, but it a�ects yourself and your team. You must be
resourceful in developing so�ware and features.

Once you’re ready to develop, you need to be adaptable.

Customers,managers, andbusinesses canchange theirminds andour solutionsmaynotworkanymore.
Youmust remain flexible and keepmomentum.

On a technical level, you need tomake sure a codebase is flexible enough. But, you also don’t want
to make a codebase too flexible. Once you develop solutions that “might be useful later”, you risk
over-engineering. It’s a harmful practice that canmake a codebase overly complicated, but it’s very
nuanced and hard to balance.

The book will break down “resourcefulness” into tools and strategies. It will help you become a
resourceful mobile engineer.

This bookputs a strong emphasis onbeing able tomove forwardwithout knowing all the information.

A guiding topic is to keep your code flexible and simplewithout over-engineering. This way, you can
confidently deal with unforeseen changes and keep a simple, yet adaptable, codebase.

1.6 What to expect during Mobile System Design interviews

The book’s focus is not limited to passing interviews. But all the techniques inside will be extremely
helpful for the interviewing process.

During Mobile System Design interviews, you’re tasked to design a feature or functionality. You do this
by drawing diagrams or writing out (pseudo) code.

During this time, interviewers are looking for so-called “signals”. These signals are indicators that will
tell them you are at the level that you’re applying for.

If you’re applying for a junior, SW I or SW II level, job, you can expect to receive UI and feature specifica-
tions to come up with a technical design. For example, the interviewer might ask: “Howwould you
build a screen that downloads and displays a list of workouts in a gym app?”

While modeling this feature, you’ll cover topics such as networking, testing, and how to decouple UI
from business logic.

6

Mobile System Design: Resourceful Engineering

When interviewing for a senior level, expect the questions to become more broad or “larger scale”.
The interviewers might look for signals that you deliver a feature that serves larger flows andmultiple
use-cases.

Alternatively, they might ask how you would make a feature reusable across the entire application
or multiple targets. This will touch on topics such as architectures, interfaces, generic code, domain
modeling, and dependency injection. You can also expect to be asked about more complicated topics,
such as downloading large amounts of local data, caching, or security.

If you’re applying for an even higher position, such as a sta� engineer, expect to gomore grand-scale.
At this level, expect having to come up with solutions ranging from building features all the way to
release management.

Interviewers may ask what is required to scale up the feature so that it can serve all teams, multiple
targets, platforms, and domains.

The questions at this stage can go deep, such as writing generic, reusable components.

Alternatively, questions can go wide. Such as explaining how to introduce a large feature that requires
a tremendous e�ort frommany teams. They may ask you what a highly modular architecture would
look like for a decoupled codebase suited for an entire organization.

If you’re preparing for an interview, this book will help you with a deeper knowledge of common
interview questions. It will help you ask better questions while being briefed — signaling to the
interviewer you are capable of thinking about a problem on a deeper level.

Once an interviewer asks you to create a program from scratch, then this book will have your back. In
the Holistic-Driven Development chapter, you will see how to get something up and running quickly.

A common theme for Mobile System Design interviews is architectures, interfaces, domain modeling,
testing, and dependency injection. The book covers all these topics are in depth.

A big bonus that this book o�ers is that you don’t need to rely on third-party frameworks as crutches
to achieve excellent results. You’ll be prepared in an interview setting where code will be vanilla and
first-party, such as coding in a web browser.

1.7 What this book is not

This book focuses on feature-development, mimicking daily work for the mobile engineers. The book
starts by building a local feature until you reach a larger scale where the book covers topics such as
designing domains suited for an entire app and delivering a modular app.

However, in this book you will not make an app that’s feature-complete and ready to ship. This book is
about processes, ideas, concepts, mental models, and avoiding pitfalls.

7

Mobile System Design: Resourceful Engineering

One aim of this book is to help you pass those System Design interviews. However, this book is
not a template for System Design interviews, where onemight expect prepared answers to common
questions. The book isn’t here to provide youwith a generic script to regurgitate back to interviewers.

For example, the interviewer might ask, “Howwould you store remote data locally?” and youmight
share trade-o�s between a local database versus a key-value store versus using a secure storage. That
is definitely a useful topic, but it can only cover rehearsed problems.

This book is about learning to reason so you can design any feature that’s thrown at you at work or
during interviews.

For example, in the briefing chapter you are given a feature, but instead of giving you common answers
– e.g. “Use a database for large data but a key-value store for a simple dictionary” – the chapter is about
asking the right questions back to the person briefing you.

By asking questions, it will signal the interviewer that you’re getting to understand a problem on a
deeper level. During daily work, it will help you find a better solution to your problem.

Sure, maybe today the problem is o�line storage and you can give some rehearsed answers to that,
but tomorrow the problem could be something completely di�erent, maybe you’re tasked to make an
AR video solution where youmay not even knowwhether there’s an SDK for that, yet. By the end of
this book you’ll have more confidence to tackle unknown problems.

Since the book can’t cover all problems that ever existed or will exist, the book focuses on giving you
tools to handle most problems that are given to you.

1.7.1 This book is not a traditional programming book

This book is also not a “code book”. It contains code, and in some chapters more than others, but only
to some extent. A lot of pages are more filled with reasoning about what we’re making, and less so
about code tips-and-tricks to build things.

Luckily, the book won’t keep its advice generic and shallow. It demonstrates how to do everything in
code where needed, just not 100% of the time.

This book will not cover UI styling and animations. Despite that, it has a strong focus on UI from a
system perspective; You will learn how to best decompose UI into components. You’ll even go as far as
designing a UI library powering a Design System. We will cover architectures and their roles, and you
will implement a feature in an architectural sense combined with domain modeling.

Last but not least; This book focuses on native development. Releasing a hybrid app that’s shippingwith
web-technologies is outside this book’s scope. Keeping the project native is, to be honest, something
most mobile engineers can appreciate.

8

Mobile System Design: Resourceful Engineering

1.8 This book is about timeless principles, not trends

One of the keymessages in this book is that you can get a lot donewith plain, vanilla, first-party code.

Forget trendy third-party frameworks and architectures for a moment. With some sane programming
and safeguarding the code quality, you can deliver a giant mobile application.

Not too long ago in our industry, Photoshop and Illustrator got replaced by Figma and Sketch, and so
will the next best thing replace them. Objective-C and Java are still in use, but they have to make way
for Swi� and Kotlin.

Nowadays, somemight say UIKit and XML layouts are outdated, andmay consider Swi�UI, Jetpack
Compose, and Flutter the future. Who knows, maybe one day instead of writing native apps for iOS
and Android we’ll write a new thing that runs on anywhere, let’s call it mobile-assembly.

Change is inevitable. But, despite tools and trends changing around us, the process will be similar.

You’ll deal with companies or people having an idea to produce something. You’re alone or in a team,
you receive designs and specs, and you need to deliver and focus on the right things;

A�er releasing an app or update, you will update andmaintain that code. It doesn’t matter whether
you use Swi� or Kotlin or Kabomaflug (a new language I just made up), the concepts will be similar.

Some engineers may follow trends but struggle with foundational problems; They may use the latest
and greatest frameworks, but their app might be a spaghetti code-mess underwater. Or they’d reli-
giously program in a reactiveway, but can’t helpbut over-engineer their “pure functional programming”
codebase. This book will help you avoid these pitfalls.

1.9 This book is for iOS, Android, andmulti-platform developers alike

This book uses Swi� as a vehicle to explain concepts and best practices, and it’s not relying a lot on iOS
specifically. This book focuses mostly on concepts, mental tools, reasoning, and approaches.

With some basic programming knowledge you’ll be able to understand the Swi� code examples with
ease.

We won’t go too deep about platform or language-specific requirements. Where needed, the book
explains specific Swi� keywords.

So whether you’re an iOS engineer, Android engineer or use Flutter, React Native or other mobile
platforms, you can apply the knowledge from this book.

9

Mobile System Design: Resourceful Engineering

1.10 Is this book for you?

This book assumes you’re serious about developing apps, whether that’s by yourself or within a team.
The book does assume you will work with others, but it doesn’t matter whether you’re in a tiny startup
or in a giant mobile department in big tech.

It’s written primarily with junior and senior developers in mind. I’d argue that sta�-level engineers can
get plenty of value out of this book as well, depending on the background.

This book does go over the process that you’re already familiar with, but aims to give you new per-
spectives, tools, and considerations at each step, so that you come out a better developer at the
end.

If you’re never made an app before, you can use this book to get some ideas on what starting a project
from scratch would look like and how you can work in a mobile team. But it will not show you how to
set up a project.

1.11 How this book works

This book starts by being briefed and receiving designs, and we build from there. So there is a natural
flow to build something from scratch, and during this book’s progression, this feature (and app) will
grow.

If you want to jump to a specific topic, such as testing, you can. Just note that the chapters build on a
feature that grows throughout the chapters.

1.11.1 A strong focus on building the right things

Building the wrong things fast is worse than building the right things slowly. It’s easy to get distracted
by details and losing focus.

Delivering fast means spending your time and energy in the right places. Because of that, this book
will put a strong emphasis on keeping momentum andmaking sure we keep our focus.

10

Mobile System Design: Resourceful Engineering

1.12 The chapters

1.12.1 Chapter 1: About this book

This is the chapter you’re reading now. Where we cover the challenges of mobile development and
how System Design can help.

1.12.2 Chapter 2: Turning a briefing into a strong plan

In this chapter, you’ll get briefed for a feature that will be the key feature used throughout this book.

We’ll reason about finding requirements, both obvious and hidden, and come up with a plan to imple-
ment it.

You’ll learn how to sketch out a technical design while missing half the information.

The chapter covers talking to designers, backend developers, and other ideas to get a complete picture
of what you’ll be making.

If you’re preparing for job interviews, then this chapter will be useful to you.

1.12.3 Chapter 3: Holistic-Driven Development; Turning a plan into code

In this chapter, you’ll learn on how to take a design and use that to deliver a feature. You’ll do so by
defining the components and designing the interfaces, or APIs required.

We’ll take a holistic approach. Meaning that you’ll jump between the components that you create, to
end up with a working prototype. This approach helps you to deliver quickly and ensures you will keep
the highest priority in mind.

This chapter is more code-centric; We’ll go into API design, data modeling, and domain modeling.

It has a strong emphasis on designing without interface types and explains why.

You’ll learn how to implement a robust feature quickly, without getting distracted by the details.

At the end of the chapter, we’ll go over trade-o�s and downsides of this approach to get a deeper
understanding of when to apply this technique.

This chapter is crucial if you’re a feature engineer or applying for jobs.

11

Mobile System Design: Resourceful Engineering

1.12.4 Chapter 4: System-wide testing; Delivering higher quality apps

This chapter challenges the status quo in testing.

A common approach to testing is to use many interfaces and test the smallest units.

But in this chapter, you’ll see how to test using fewer interfaces, allowing you to test the system on a
larger scope.

The reason we do this is to getmore quality guarantees early on in the development process. This
chapter explains why this is important for mobile development.

As a bonus, you will learn how to testmore by writing less code.

Like all testing approaches, neither is this approach a silver-bullet solution. But, we’ll cover the trade-
o�s and you’ll discover some techniques to handle its downsides.

1.12.5 Chapter 5: Cross-domain testing; Testingmore with less e�ort

Amajor benefit of system-wide testing is that we can test across multiple domains more easily. We’ll
exploit that benefit to spend even less time to test more.

In this chapter, we’ll reason about which domains are more volatile and which aremore stable. To help
you figure out where to invest your time and energy for writing tests.

It covers where to fix issues if any arise in our entire program, and the responsibilities of a domain
when testing across them.

1.12.6 Chapter 6: Dependency injection foundations

This book has three chapters dedicated to dependency injection. This is because it’s a contentious
topic that many developers struggle with.

We start with the basics ofwhy we need dependency injection. It covers some common scenarios that
can be harmful.

Onebig part of this chapter is dealingwith singletons, since they are common inmobile development.

It might be common knowledge that they are harmful. But this chapter o�ers some fresh perspec-
tives.

Many developers like to modularize their code. This chapter shows the negative e�ect singletons have
when you wish to modularize your code.

12

Mobile System Design: Resourceful Engineering

Another issue is that developers sometimes think that making singletons thread-safe is enough. But
this chapter will show easy it is to break them in a real-world scenario, even when they are perfectly
thread-safe.

Lastly, we will cover scenarios when singletons domake sense and are a good idea to implement.

1.12.7 Chapter 7: Sane dependency injection without fancy frameworks

In this chapter, we’ll start making an implementation for the feature in this book.

The goal of this chapter is to show you how to pass dependencies aroundwithout any fancy techniques
or frameworks. The goal of this chapter is to show that we can keep it relatively straight-forward and
simple.

1.12.8 Chapter 8: Dependency Injection on a larger scale

In this chapter, we handle dependencies in larger code-hierarchies.

You see how to reduce a giant dependency tree to make the problem smaller and more simple. By
doing so, you’ll learn how to weave dependencies across many types.

Then we go one step further; Handling dependencies in a modular app.

Becausewhen an app grows, people tend tomodularize them. But, whenwe are passing dependencies
across modules, we have unique problems to consider. This changes the way we reason about our
dependency solutions.

1.12.9 Chapter 9: UI frameworks, architectures, and supportingmultiple products

In this chapter, we will enter the phase where we’ll implement UI.

But, before we do so, this chapter will cover how to reason about a feature so that it supports any UI
architecture or framework.

We’ll cover why UI architectures aren’t as important as youmight think.

The chapters will go over the benefits when you delay an UI implementation. You will learn about the
benefits you get when you treat your features like a self-sustained command line tool.

lastly, it will cover how to reason about a codebase when you want to support a wild variety of UI
architectures, frameworks, andmultiple products.

13

Mobile System Design: Resourceful Engineering

1.12.10 Chapter 10: Delivering reusable UI components; The art of decomposing a
design

Turning a design into views (or components) is a common task for mobile engineers. But, this chapter
will show you how to do it in such a way so that you not only deliver your feature, but you will develop
a UI librarywithout extra work.

A big topic of this chapter is naming, and you’ll see why it’s crucial for delivering components. It encour-
ages us to think about important concepts like abstractions, reusable components, over-engineering,
and long-term thinking.

It’s an important chapter for any mobile developer, and should help youmake better components for
mobile and other platforms.

1.12.11 Upcoming chapters

The upcoming chapters are being written as you’re reading this. They aren’t final, but expect to see
chapters related to:

• UI bindings, where we connect data to components.
• Creating a design system – not to be confused with system design – where we create a library of
reusable components for larger apps.

• Delivering UI flows. Making sure flows are easy to set up and use across an application.
• Dividing an app into modules.
• The role of UI Tests, integration tests, and manual testing. How to use these techniques for a
higher quality app.

• A summary of all lessons and how to apply those to your work.

14

Mobile System Design: Resourceful Engineering

1.13 About the author

Tjeerd in ’t Veen is a mobile developer since 2010, with a long history in iOS and working closely with
Android developers. His career includes being a sta� engineer at Twitter 1.0 and a iOS tech lead for the
ING international bank. He has been delivering features across various platforms since 2000, and has
been involved in hundreds of projects.

Tjeerd wrote the highly rated book called Swi� in Depth, published by Manning.

You can find his blog on https://www.swiftindepth.com. You can find him on Twitter, now X, at
@tjeerdintveen or on Mastodon at @tjeerdintveen@mastodon.social.

When he’s not working, he spends most of the time being a family man, a dad of two daughters, and
noodling on a guitar.

15

https://www.swiftindepth.com

2 Turning a briefing into a strong plan

In this chapter

• Being briefed for a new project
• Creating an approach from a lot of unknowns
• Ending up with a starting-point
• How to get a fuller feature set from a partial briefing
• How tomake sure we focus on the right things
• Avoiding pitfalls when planning a new feature

It’s a common routine: We receive some designs, some (vague notion of) requirements, and then we
are asked “Can you make this?” followed by the fan-favorite “When do you think it will be finished”?

Somewhere in an alternate universe during a Systems Design interview, the question is not “Can you
make this?” but “How would you make this”? A�er which you’ll have to describe your thought process
of turning a design and specs into bits and pieces and sometimes even pseudo-code.

Meanwhile, two interviewing engineers will look at you pensively, sweat drips down your forehead
because even though it’s again the same argument about how import UI is (not) allowed in a view-
model, giving a good answer couldmean you get a cool job andmaybe even relocate your entire family
to a new country. . . or not. The pressure is on.

It doesn’t matter whether we’re talking about a full-sized app or a tiny feature. Every time we get a
design, we have to figure out how to turn pretty images and cool ideas into a real – albeit intangible –
thing.

To some, it might seem easy when all we have to make is a tiny component in a toy app or tweak a
button’s width; But as soon as we are making an entire tech stack with abstractions, domains, and
components shared between numerous features and teammates, then the landscape changes and we
have to think di�erently.

Not to mention that you’re in for a treat when dealing with (smelly) legacy code that nobody dares to –
nor wants to – touch.

In this chapter, the book briefs you in a similar fashion. You will receive a design and then we are
going to cover approaches. A�er that, we will try to get more (hidden) information to get a complete
picture.

17

Mobile System Design: Resourceful Engineering

The goal of this chapter is to give youmental models on how to receive specs and a design. Then you’ll
end up with a sound plan for delivering the components needed for this feature.

But, we will start small for a couple of reasons:

• First, by starting small, we can focus on the process in a smaller setting, which you can replicate
in both small and bigger applications.

• Second, to match the real-world experience; O�en inside a company or during a System Design
interview, you will be asked to work on a smaller feature-set consisting of only one or a few
screens at a time, not a giant app from scratch.

2.1 The briefing

Together we’re going to work on an app where a student can connect with tutors to learn new skills,
such as learning to play guitar or learning to speak Italian.

The app is unreleased, but we can assume the project already exists so it’s not 100% from scratch. We
don’t have to worry about setting up a new project.

With this product, tutors or coaches will check in with students via 1on1 calls. Between these 1on1
sessions, students would follow a plan – o�ered by the tutor – consisting of assignments or exercises
to make sure they keep on track and keep improving.

Tutors will be the ones making these tailor-made assignments and can give feedback when needed.

Now imagine you’re joining my team to build this, and I’m giving you a screen for this app, asking you
to implement it. Don’t worry, we’ll do it together.

Here we can see themain screen a student would see. It has assignments, tutor information, a way
to reach out to the tutor, some scheduling information, and a worksheet or todo list of recurring
activities.

18

Mobile System Design: Resourceful Engineering

19

Mobile System Design: Resourceful Engineering

In the tab bar at the bottomwe seemore features in this app, but we don’t have to worry about the
rest of the app for now. With just this screen, we can apply a lot of principles.

2.1.1 An initial impression

Looking at the design, we can see it’s already quite high fidelity.

NOTE: A high fidelity design is a term used by designers to indicate a design that’s close to the final
product. As opposed to low fidelity, which is more conceptual and wireframe-like.

This screen alone may look simple at first sight, but has some not-so-obvious features to make every-
thing work.

For example, there is quite some linking going on; There are TODO items, and they have arrows hinting
at details. This screen can open other features such as messages and opening a call. At this moment,
we don’t know if those buttons add views to the current stack, or if it’s a deep link to a distinct part of
the application. Perhaps the buttons link to entirely di�erent apps.

Next, notice how this screen is populated with properly filled content. But what if we don’t have
anything scheduled? Or what if the tutor forgot to add TODO items? Or what if the tutor didn’t add a
callout message? Will this screen just be mostly empty space?

Notice how some of the TODO items are daily. Who resets these daily items? Perhaps the user does
it manually, or should these items auto-reset themselves locally in the app? Or perhaps the server
should auto-reset them?

All these things are unclear for now.

Next, what about tablet-support, or landscape mode, or dark/night mode? What about the data?
Where does it come from? What about local storage or caching? What about error handling?

These are just the initial things we knowwe don’t know. What about the unknown unknowns? We don’t
knowwhat else we haven’t thought about.

Long story short: There are quite some known unknowns and unknown unknowns at this stage.

2.2 Evaluating common approaches

So where to begin?

There are a million ways to implement an app. Despite that, let’s take a moment to consider various
approaches and why they may or may not be a good idea.

20

Mobile System Design: Resourceful Engineering

Warning: Opinions incoming. It’s okay to disagree! But please humor me and follow along. Seeing
di�ering approaches can give perspective.

2.2.1 Start with UI?

Would you open your editor and start making the UI and screen right away?

It’s a common way to start, and it’s heavily pushed on us non-assuming developers everywhere.
Tutorials, blogs, online videos, they all show how “easy” it is to make the most exciting (toy) apps.

Which is great if you want to get started on an idea, or to learn, or to get excited about making some-
thing.

For your own projects, I definitely encourage you to start with UI. It’s a lot of fun.

In a larger real-world app, however, the rules are a bit di�erent.

When starting with UI, the pitfall is that we avoid consideringmultiple angles. We’ll “just start building”
without thinking about most of the required parts.

Eventually, you’ll be painting yourself in a corner. You’d discover hidden features and requirements
too late; Like building the walls and then realizing a�erwards that the new homeowner would like
somemore windows.

By not planning, you’d risk slapping code onmuch later in a quick and dirty way, adding tech debt in
an early phase.

Another pitfall is that by starting with UI, youmight be pulled into discussions with teammates why
Swi�UI is better for this than UIKit, or whether to use Jetpack Compose vs XML.

Just because we receive UI doesn’t meanwe have to start there.

Let’s take a step back. We just established that there are already a lot of unknowns.

If we start with UI, we’d be thinking too locally. What I want to emphasize is to see beyond the UI and
think in the bigger picture. Try to uncover all systems hiding in plain sight that are working together to
make this app work.

2.2.2 A data-focused approach?

Maybe you’d start programming but focus on the data? Youmight start thinking of all the information
that is required, stored, and passed around.

It’s a good idea to think about what data is needed. It will make you ask good questions. Such as
which fields are optional, which determines whether some UI components are hidden or which screen
variations we need.

21

Mobile System Design: Resourceful Engineering

Thinkingaboutdatawill alsomakeyou thinkabout the foundations required tobuilda feature. Thinking
about data will also make you think about persistence, networking, and caching.

These are all important topics in a job interview and building features.

There is a pitfall: Don’t get carried away into creating a perfect working application with the perfect
names, types, structs and fancy testability.

Let the data guide you to think about what needs to be stored, passed, and presented and use that as
a starting point.

2.2.3 Creating an app-skeleton or flow-skeleton?

Assuming there is no app yet, would you bemaking the entire app skeleton first? Such as settings up
the entry point (e.g. the Main class or AppDelegate), navigation bars, tab bars, maybe add placeholder
UI with empty screens?

Without focusing toomuch on UI or features, having some sort of skeleton app is a productive way to
sketch out how everything will fit together. At this stage, it’s cheap to add, delete, and update screens
and flows.

Using placeholder screens, you get a good impression of the feel of the program. Just make sure you
don’t get lost in the details yet.

Placeholder screens are a great idea when receiving a flow. However, in our scenario, we can focus on
a single screen.

2.2.4 Starting bymaking components or features?

Would you focus onmaking independent components? Such as a scheduler, todo list, and messaging
service? Or maybe UI Components? such as buttons and other views.

This can be a good idea, but we still have to think about how it all comes together as a whole and at
this stage. We also don’t know all the requirements yet.

I would avoid focusing toomuch on single components. Otherwise, we risk getting carried away by
making the perfect views or nicest todo list (we wouldn’t be the first developer to get carried away).

2.2.5 Drawing a diagram?

Would you draw a diagram of this feature and see how everything is connected? Maybe to help decide
what to build first?

22

Mobile System Design: Resourceful Engineering

Sketching out a diagram encourages thinking which bits and pieces you’re going to need.

It’s not a mandatory step, but it definitely helps you think about the whole system.

In a real-world application, that’s a great idea. During a System Design interview, coming up with a
diagram is also how you’d be communicating your ideas to the interviewers.

In a team-setting, I strongly recommend drawing some sort of diagram tomake sure everybody agrees.
In this book, that is also what we’ll do. We’ll use the diagram as a vehicle to make decisions at every
step.

2.2.6 Decide on an architecture?

Would you perhaps start with an architecture in mind, thinking of maybe using a reactive approach,
or decide between MVVM (Model-View ViewModel), MVC (Model View Controller), or MVP (Model View
Presenter)?

NOTE: O�en when app engineers talk about architecture, they are referring to the part that glues the
business code to the UI code. Not the entire, global, architecture of an app.

Here is my advice: Stop thinking about architectures, we haven’t even written a single line of code
yet. Architecture is for much later, if at all. Because maybe all we need are a fewminor components.

So far, we’ve only seen one screen. So if someone blurts out “This is a great use-case for reactive
programming!”. Then it signals they haven’t really thought about the problem deeply enough yet. This
is a red flag that someone is too married to “the one” architecture that they’re comfortable with.

Picking an architecture would be a next step, but not the first. We have to consider an architecture that
works best for this app, not what we are comfortable with.

You might catch yourself leaning towards a single architecture regardless of what you have to make. In
that case, try to check in with your biases and experiment with other architectures and programming
languages to expand your horizons.

There is no silver-bullet single architecture, only trends and best practices.

In our case, deciding on an architecture is a bit too early stage. We’ll get there if needed. For now, let’s
agree to let our architecture grow organically the more we understand the problem.

Maybe, for instance, we need to make local architectures that di�er for each domain. For exam-
ple, maybe we want to make a specific declarative architecture to deal with the Calendar part and
scheduling events. Maybe a coworker wants to use a di�erent mini-architecture for o�line-storage
functionality.

23

Mobile System Design: Resourceful Engineering

Thenmaybe these mini-architectures will grow together in one large overseeing architecture in the
app itself. Maybe it will be complicated to tie it all together, andmaybe it won’t, let’s park that decision
for later.

2.2.7 A recommended approach

We’ve gone over the pros and cons of some common approaches. I’m sure there are more approaches
youmay prefer.

There is not one perfect way to attack this “problem”. There are plenty of approaches to take. Many are
valid, some are problematic.

The bigger takeaway here is to try not to get lost by details toomuch. We’re in the sketching-phase,
we need a general outline of what we need and we need to uncover hidden requirements and we are
dealing with known unknowns and unknowns unknowns right now.

In terms of UI, we wouldn’t start with fancy drop shadows and animations before we even have a
functional screen, right? No it’s better to get some parts working first before wemake it look pretty.

So let’s forget architectures and discussions about Swi�UI vs UIKit or Jetpack compose vs XML, forget
thinking about putting data in controllers vs viewmodels.

Let usnot argueaboutwhyviewmodelsdo (not) belong indeclarativeUI.Wecandefer thosediscussions
until later. This will give us a better understanding of what we’re going to build.

Nomatter the approach you prefer, I hope we can at least agree on one thing:

The best decision at the first stage is to understand the problem better.

Understanding the problem better will give us a better starting-point, because it will help us uncover
wrong assumptions andmissing features.

So that’s what we’re going to do right now. Let’s begin by drawing a diagram.

2.3 Sketching out a landscape

We will create a landscape, which is a collection of domains and components that will be required
to make our feature work. We can think of this as our architecture, but instead of “choosing an
architecture”, we will let it organically grow and evolve.

First, let’s get the obvious features out of the way. This will get them out of our heads, and then we can
focus on the not-so-obvious secondary requirements.

24

Mobile System Design: Resourceful Engineering

We see that the screen has some functionality staring in our face since it’s UI and thus customer-facing.
There is an avatar, some sort of Todo list, a way to open a 1on1 call. But, we don’t know the details
yet.

Let’s note down the UI-based features in plain text, so that we can turn these into a graph a�er for a
better visual representation.

Featureset:

• Some sort of TODO List

– TODO’s are recurring (by week or day, maybe others?)
– TODO’s can open a detail (details unknown)

• A Tutor profile

– Has avatar and name
– A tutor has some sort of dismissible callout
– Some sort of messaging feature to contact a tutor

• Some sort of calendar functionality

– There is a summary of planned 1on1 calendar-events
– Ability to reschedule
– Ability to join calls

• Swapping between courses: Up top, we see that the user can open a di�erent course with a
di�erent tutor.

We are sketching here. Hence, we call the feature “some sort of. . .” since we don’t know yet exactly
how it will work.

For example, we see a calendar event for a meeting. Should we call it a Meeting or 1on1? Or maybe
CalendarEvent or Scheduler? Let’s go with Calendar since it’s an umbrella term for scheduling
events, rescheduling, linking to moments in time, etc. We can always rename it if needed. Then
Calendar can help us join an event or call, and maybe it can help reschedule with some sort of
Scheduler.

Let’s turn the aforementioned feature set into a diagram (we’ll deal with Swapping tutors in a bit).

25

Mobile System Design: Resourceful Engineering

NOTE: It’s okay and expected to start naïvely. There is no pressure to figure it out perfectly in a single
attempt. We’re brainstorming.

Notice how Tutor, Calendar, and TODOList have a regular outline. This means that they are de-
composed, they are broken down into child nodes. If we wanted, we could start implementing them
roughly, despite their child-nodes not being figured out.

Then, one layer below, wemark features with a dashed outline; Dashedmeans that components aren’t
either fully figured out yet, or they are not decomposed yet. It’s a way to signal that they aren’t “done”
thinking about.

For instance, the TODOList -> Entries connection isn’t figured out, since its requirements are vague as
of now. Are they stored locally? Do they need an API call? We have too many unknowns to mark them
as resolved with a regular outline.

Going beyond that, Entries link to Details, what does Details show? We don’t know yet, it’s not
important for this screen. All we need to know is that it does “something”, so wemark it as dashed as
well.

2.3.1 Everything is connected to a course

If we zoom out a little more, we can say that all these features are connected to a course in a way.

In other words, a course owns, Tutor, Calendar, and TODOList. On top of that, there is also an
option to swap courses.

Let’s update the graph to represent that these components all belong to a Course.

26

Mobile System Design: Resourceful Engineering

Looking at Swap Coursewe can see it’s a child node of Course, we haven’t really figured swapping
courses out yet so we leave it dashed.

Consider swapping courses a low priority feature, because why worry about supporting multiple
courses or tutors while we haven’t even gotten a single course to work?

We do knowwe need it, so we add it to the diagram andmark it as dashed. A�er we talk to the designer
wemay learn more about this feature.

Remember, we are sketching and iterating and learning about the requirements. It’s okay if it’s "good
enough" for now. Try to turn o� that perfectionism internal dialogue (if you know how, please share your
secret).

2.3.2 How far do we decompose?

If we were to keep zooming out, we’d see the entire app connected as one giant graph of components
depicted as nodes.

Youmay wonder how far to keep decomposing.

A rule of thumb is: Decompose until you feel you understand the problem well enough to start the
implementation.

There is no need to keep decomposing until we dissected components into ones and zeros.

At this stage, the art of a technical design is jumping from feature to feature, from requirement to
requirement, and figuring out which components to make. It’s important to keep it high-level, so we
don’t lose time focusing on details.

Make it clear what to focus on and acknowledge that there are unknown components that you need to
resolve later.

27

Mobile System Design: Resourceful Engineering

Before we start implementing this feature, let’s continue figuring out requirements and components
until we feel confident enough to start.

2.4 Uncovering secondary requirements

We now have an approach; We are creating a landscape graph where we decide what to make and
what to figure out.

We focused on “obvious” UI features that were staring us in the face. However, UI is only part of the
picture.

We could start implementing now, but our job right now is to uncover hidden requirements, find
edge-cases, not just what we see in the UI.

If we don’t make a plan, and “just start building” it will hurt us later. Such as having to redo features
because we uncovered an important detail nobody thought of yet. Or worse: We’d focus on features
that aren’t needed at all in hindsight, throwing away weeks of work.

Let’s focus on the not-so-obvious parts andmove on to secondary requirements.

Don’t open Xcode or Android Studio or whichever IDE you prefer. Don’t start programming. I know, I
know, it’s where the fun happens. We’ll get to that in the next chapter.

Unfortunately, taking amoment and talking to people has priority now.

NOTE: “Fun” fact: Did you know that the more you get promoted, the less time you spend programming
and more time talking to people in meetings?

We should take some time and uncover unknown requirements. We do this in a few ways:

1. Think about and figure out all components (not just UI) that are needed to build the feature. It
sounds obvious, but many can’t resist programming right away.

2. Figuring out missing functionalities or requirements; Such as by asking the right questions to
teammates with various roles and disciplines.

3. Trying to challenge the design, and think of ways that the design would break, uncovering new
requirements.

Chances are, we’d uncover details or missing elements that others haven’t even thought of yet.

There may be details lurking that can be important to know before we even write class Course.
By getting a full picture of the problem-space, wemight evenmake sure that our team iterates over
features before we start writing code. It might surprise you how o�en you can uncover an important
“Oh we didn’t think of that” which a�ects both UI and backend.

28

Mobile System Design: Resourceful Engineering

NOTE: During System Design interviews, you can’t go back and forth with a designer. But you can
communicate the unknown details and missing information. This shows the interviewers that you’re
understanding the problem on a deeper level, and are considering edge-cases.

2.5 Working with Designers; Getting secondary features

Let’s approach talking to fictional designers, so that we can uncover more requirements, and as a
result, come up with a better design.

The goal of talking to designers is threefold:

• First, to make surewe understand the problem better.

• Second, we want to make sure they understand the problem better, too. By o�ering some
technical perspective.

• Third, we want to challenge the design itself. Not to annoy the designer, but tomake sure we find
edge-cases, (de)prioritize UI components, and uncover situations that nobody has considered
yet.

With some good input, you can trigger a small iteration of the design before you even begin.

A productive conversation should result in an improved design and a better understanding of
the feature in the team.

NOTE: Keep in mind that the designer is your ally! You are improving the product together. You’re not
here to be their devil’s advocate and critique their work.

While you’re at it, inform designers about the way you work. Tell them that the UI — although functional
— probably won’t look nice in the beginning. Remove their worries that you will not finish the details
later. Fancy UI details might not be the highest priority for us, but it o�en is for designers.

Working closely with the designer has a lot of perks, one of them is minimizing the communication
gap. The worst thing is to not communicate together, wait for weeks, and have the designer give you
the final-final3-final-reallyfinal.sketch design file for you to implement.

It’s vital to work closely together to create a better design and plan.

Let’s go over some talking points so we can learn more about the feature and update the graph where
needed.

29

Mobile System Design: Resourceful Engineering

2.5.1 Whether or not a design is the "law"

Youmaywonder if a design is “the law” and should be 100% followed, or if it’smore of a communication
tool, ready to be interpreted.

The designer could deliver everything with a low fidelity (low detailed) design, or even in plain English
“Make a screen with an avatar top-le�, and a todo-list at the bottom, and . . .”

This approach is too hard to align on. Maybe that’s howwe will work in the future with AI generating
apps.

More commonly, we receive a design that brings us closer to the final product. But it isn’t the final
product – we aren’t shipping images to customers a�er all.

We can’t assume a design captures all variations, even when a design program supports code.

When youmultiply all supported device sizes times platforms (e.g. phone and tablet) times dark mode
times light mode, times all font sizes, the design file would be huge. It doesn’t make sense to design
everything upfront.

Even if a designer gives us those variations, the design wouldn’t define everything still.

A design doesn’t convey things such as animations, all language variations, or how the screen would
look with a slow network connection, or how the experience is when the customer has to retry a failing
submit form.

We can get close, but the design is still an approximation of the final product.

2.5.2 What is ’pixel perfect’, really?

When we say we’re delivering something “pixel perfect”, we usually refer to making the UI exactly like
the design where we can. We will pick the exact colors and border widths, and we will position the
elements for a specific screen. Wemight overlay the design over the app and pixel peep to make sure
everything looks the same.

However, there is room for variables, where each screen will look di�erent because of its content and
environment. The appmight have dark mode enabled, or use a Right-To-Le� language. Or use larger
font sizes for accessibility. With little e�ort, we already deviate from these undesigned variations.

That means that “pixel perfect” is o�en an approximation. Even the way apps render shadows di�er
per platform, so that’s not “pixel-perfect”, that’s “as close as we can get that makes the designer sign
o� on it”.

The design is a communication tool depicting the final implementation. It’s a plan of what to
make.

30

Mobile System Design: Resourceful Engineering

At one point we have to decide “This design is enough for us to agree on things and get going”. It can’t
be the absolute law for everything.

For a smoother process, use the design as a starting point. For all deviations, be sure to include the
designer during development while iterating. Make sure they agree on decisions, such as supporting
large fonts, or small fonts, animations, and anything else that might deviate.

2.5.3 Designs o�en encompass best-case scenarios

A designer will usually deliver neatly filled screens. They’ll pick a nice stock photo to fill the necessary
images and they’ll make sure all text fields will contain a full’ ‘lorem ipsum’ text. It’s the perfect-looking
content for the perfect screen.

But then real life comes into play. Real-life data hits di�erent. It’s random, dirty, ugly, and all over the
place and that may not always fit the intended designs.

Once you let people upload their own pictures and add their own information, the app won’t look like
the design. We can’t guarantee that the—once aesthetically pleasing— screenwon’t look as appealing
in practice.

An avatar might be missing, or perhaps it’s too low-resolution. The descriptions might beway too long
and half the fields might be empty. Not every user takes great care in filling in their details.

If texts are missing, is that okay? Here, we need to make sure to check with the designer that it’s a
viable option. If not, there’s a strong chance that the UI might break with imbalanced content.

As a rule of thumb: Ask for a worst-case scenario design with poor content and see if the design
still holds. Even with the worst content imaginable, the design should not break.

As a developer, thinking of a particular design isn’t necessarily your job. However, you are working on
this project together and poor content is a truth we can’t avoid. So, it’s better to find any issues now
preemptively versus facing potential complications down the line.

2.5.4 Not everything has equal priority

A surefire way to deliver less e�iciently is to accept anything in a design as absolute, uncontested truth
and implement it as if to blindly follow orders.

But not all ideas are weighted equally. A design is not set in stone; It’s a preliminary plan or proposal of
what to make. Like all designs, it is subject to iteration. With that in mind, you’ll be the onemaking it
come to life – albeit behind a pane of glass.

31

Mobile System Design: Resourceful Engineering

When receiving a design, don’t assume all components are equal in terms of priority andmagni-
tude.

It may sound counterintuitive, but finding ways to not build features can ultimately lead to better
outcomes for everyone, including the designer. Getting a team to agree to prioritize features will allow
you to ship more quickly. As a result, the team— including the designer —will receive insights from
customers and other stakeholders within a shorter time frame.

You will also be able to focus on the core features that we absolutely need to ship, versus those that
are more accessory.

Taking a proactive approach to learning at the early stages of the development cycle allows us to
change course more quickly as needed. It also helps us avoid the potential risk or throwing away
valuable time building features that customers didn’t actually want.

For example, in our case, the assumption right now is that people can havemultiple courses (tutors) at
the same time. In reality, usually someone is learning one major skill at a time (e.g. learning Spanish).
But it’s rare that someone wants to learn Spanish, German, English, and Korean simultaneously.

In the design we see someone has two courses (Guitar, and Spanish), two courses are more than
enough for most users.

Even if there is a strong disagreement with a designer about supporting only one course; Practically
speaking, we need to support a single course before we can even build support for multiple courses,
anyway.

So the question is less about “will we support multiple courses”, and more about “will we ship with
support for one course first?”. It’s about prioritization.

Don’t underestimate the di�erence in time investment. A designer might add amulti-course feature
within a short time, but implementation may take days or even weeks.

When receiving designs, it’s the perfect moment to stop and thinkmindfully and critically about what’s
really important for the user. Re-evaluating priorities together with the designer mutually benefits
everyone in the long run.

2.5.5 Verify the existence of pre-existing components

A�er receiving designs, be sure to run the components by other client engineers. Be sure to check what
they already know exists in order to avoid reinventing the wheel.

It may seem completely obvious, but yet doesn’t always happen in reality; A single question in a Slack
channel, such as “Does a component like this already exist?” can save you days of unnecessary work.

32

Mobile System Design: Resourceful Engineering

Conversely, maybe there already is a component that you potentially could use, but it may be just
slightly di�erent fromwhat the designer gives us. This is a telltale sign that there is some plausible
misalignment between the client libraries and designs. If so, this might be a good time persuading the
designer to use what we have.

If there is a sound reason to make an adjustment to the existing component, or a new component
altogether, then so be it. However, a little pushback for shipping more quickly can be a tremendous
timesaver, yielding other indirect benefits. These include, but are not limited to, avoiding having to
maintain more duplicate components, which is a hidden time sink that compromises productivity.

2.5.6 Ask general UI questions

These are a repertoire of general questions you can ask which e�ectively apply to most UI-based
projects.

Try to think of things that the designer hasn’t thought of yet. This helps us find requirements that we
could miss.

Some examples are:

• What if there is more information than fits the screen? Will youmake the screen scrollable? Or
will you resize elements?

• What does the screen look like when it’s empty? (In our case, there are no tutors for us yet)

• Have you thought of large font sizes on small devices? Will the screen break?

• What would the screen look like with long labels and/or verbose languages? E.g. German needs
longer text. Will that fit?

• Have you thought of tablets? Will the screen look too empty?

• Do we support landscapemode?

• Howwill we treat errors? Just throw an alert or something nicer andmore inline?

– What about partial errors? E.g. the tutor data is loaded, but the TODO List can’t be loaded.
Will you show partial errors, or will you throw an error for the entire screen?

• Do we support dark/night mode?

2.5.7 Ask functionality-related questions

A�er you’ve exhausted your general UI questions, you can get even more information by trying to find
edge-cases that might break the screen.

33

Mobile System Design: Resourceful Engineering

Try to come upwith ways the featuremight work di�erent from intended. Like the general UI questions,
asking these questions will help us find potential problems early on.

These questions would be feature-specific, such as

• When a user completes a TODO item, do we assume it sends that message to the server right
away? If so, what if that network call fails? A giant alert might be toomuch. Can we use some
sort of notification or toast? And will the TODO reset exactly?

– If the network call fails while the user backgrounds the app, will we let it fail silently or will
the app send a local notification?

• Do all TODO items have a detailed screen? Or is that optional?

• Are all TODO’s always scheduled? Or can they be unscheduled TODO’s without a deadline?

• What if the tutor hasn’t made a plan (yet)? What will the student see?

• What if you haven’t selected a tutor yet, what would the screen look like?

• What happens if a tutor has an extremely long callout message? Should it be cut o�, or expand
on press? And at howmany lines?

• Are the daily TODO’s automatically reset? And when would that happen, maybe at midnight at
their local time zone? Or a�er X time, such as a�er 24 hours?

• If I press “reset all”, would the user get a warning? Some sort of alert perhaps?

• If user dismisses the tutor’s callout, will they lose it forever? Or can they get it back?

• Whathappens if a user joins theCalendar eventbefore it’s ready? Can they join anemptymeeting?
Or do they get an error?

• Will Calendar calls be a link or handled in app?

• Will messages be a link or handled in app?

By imagining you’re using the app, you can comeupwithpractical questions to get you and thedesigner
thinking more in-depth about the functionality.

Perhaps you’ll get a couple “I didn’t think of that actually”. Which is good, because that’s exactly what
you want to hear now as opposed to later a�er most of it is implemented.

It also makes you think of a problemmore deeply, thus giving you a better understanding of what to
build. As a result, you will get more “ownership” of the problem. In essence, bringing you closer to
being the expert on this screen.

During a job interview, it’s important to show all themissing details that you’re thinking of. It’s a way to
impress interviewers by showing you think of a lot of non-obvious parts and secondary requirements.

34

Mobile System Design: Resourceful Engineering

2.5.8 Talk about error handling

Error handling is o�en a low priority for designers and developers alike. Within good reason, it’s more
important to get a feature working first.

But a real problem is that people don’t o�en think about the errors in the initial stage. That’s problem-
atic since it can negatively impact design if it’s added as an a�er-thought.

If you don’t think about errors early on, chances are, you’ll deliver an app with a giant alert obstructing
the view, stating "Something went wrong". Which is a bad user experience and sort of a "last resort"
error.

Push towards using errors that don’t block the UI, such as toasts (little notifications) or a view having a
special inline message. Avoiding blocking the UI where possible for a better user experience.

Youmay need to work with the designer to help them understand where and when errors can occur.
Maybe your UI only has a single point of failure, or maybe errors can be displayed inline per individual
component that loads.

2.5.9 Talk about time-investments and start thinking in a less binary fashion

In some cases, maybe you’re tempted to avoid implementing specific parts of a design. For instance,
the designer might have a custom navigation bar that’s quite di�icult to get just right, and it may be
even harder to maintain.

It’s easy to fall into the trap of thinking in binary, black and white terms such as “worth implementing”
vs “not worth implementing”.

For instance, youmight be great at devising arguments which demonstrate why a custom navigation
bar is a bad idea. Despite the fact that, on paper, the points you’ve made appear objectively correct –
making a custom navigation bar is almost always a maintenance headache – To others, youmay be
unwittingly labeled as a “rigid” developer.

However, don’t jump the gun and reactively say “No.” Instead, shi� the conversation towards focusing
on priorities and timelines. Instead of saying, “I wouldn’t do that”, you could alternatively say: “This
will be x weeks more work for us to do.”

From that point on, as a team, you can then decide if the custom navigation bar is worth all that extra
time. Because, maybe it is worth it to the company to have a custom styling to maintain a central
theme in the application.

The point is to quantify the consequences andmake decisions and alternatives more tangible.

35

Mobile System Design: Resourceful Engineering

2.5.10 Giving feedback to the designer

Not everyone can take feedback like a champ. I’d argue it’s di�icult for most people. As developers, we
are more likely to be battle-hardened by having our work critiqued day a�er day, multiple times a day,
but it always stings.

However, for designers, the process is di�erent. They design for days orweeks on end,maybe evenwait
a week to finally get approval from the “design systems council”, then they iterate somemore, and then
finally, a�er hard work, they will showcase their work to the rest; A�er which the entire departmentwill
have opinions about their work. “I wish we used the colors from before” or “I wish the border wasn’t so
strong” or “Why doesn’t Google use drop shadows yet we do?”

It stinks for designers to be critiqued by experts and non-experts alike. Everyone has an opinion on UI,
yet not everyone has an opinion about code.

Nomatter how o�en people say they don’t get attached to their work, be sure to not only critique UI but
balance feedback with positive remarks as well, and try to keep it objective.

2.5.11 Updating the landscape

A�er talking to the designer, we learned a bunch of things for our project, such as

• The app is for phones only, not tablets.

• Dark mode is needed but we’ll do that in a later stage. (Wemark it as lower priority)

• Theweekly anddaily schedule auto-resets. (Wedon’t knowyet if that happens on appor backend
and how o�en)

• Scheduler opens a picker (There is no design yet)

• A�er proposing a schedule, the other party must agree. If the other party doesn’t and a schedule
has passed, the proposed schedule is deleted.

• We agree that we won’t support multiple courses for the first version.

Talking to a designer will uncover a lot of details that won’t make it into our landscape graph. But for
our purpose, we will focus on a few things that stand out which we’ll cover next.

2.5.12 A fast app is key

By thinking about the problemmore and talking to hypothetical designers, we uncovered more impor-
tant pieces of the puzzle.

36

Mobile System Design: Resourceful Engineering

For instance, the designer shares that users want to hop in quickly, check o� TODO’s, and leave the
app again.

We realize that if the app would be fully dependent on the server it would mean the user would open
the app, log in, fetch data, hopefully not get an error, and then finally see the TODO List, check o� a
single item and leave the app, hoping the network call succeeds before the app backgrounds or is
killed.

We can translate that requirement into a “thing” we need to make. In our case, that’s o�line-mode
support in the shape of a persistent store. So that the course and its TODO items are available, making
it less dependent on a stable network connection.

We don’t know yet whether this store is going to use MySQL, NoSQL, or an insecure text file.

The designer or customer doesn’t care about the details long as it works. It’s our job to care about how
it will work, but not at this stage. Because at this stage, we need a good idea of what we’re about to
make, but we don’t need all details yet.

Let’s update our landscape and add some sort of persistent store component that we need to o�er for
Course. We’ll call it Store.

Because we don’t know the details yet, wemark it as dashed.

2.5.13 Scheduler

We also learned we need some way to not only reschedule, but also cancel calendar events.

The designer confirms that cancelation is out of the scope for this screen, since rescheduling or cancel-
ing triggers a new flow. This means we can write these features down, but we don’t have to focus on it
too much. Wemark them as dashed in our landscape graph.

37

Mobile System Design: Resourceful Engineering

2.5.14 Deep Linking

We also got confirmation that features such as messaging a tutor, or opening Calendar calls with the
tutor, will happen in other parts of the application. For now, we can assume these will be deep links,
so we add that to the graph.

Again, wemark these as dashed since we know they are needed at some point, we just don’t need to
figure them out at this stage.

2.6 Aligning with backend engineers

Thanks to talking to the designer, we have becomemore aware of secondary (hidden) features. We can
follow a similar process by talking to the backend engineer.

This way, we hope to uncover more secondary requirements and important details related to data-flow
between backend and client.

In real-life, the backend engineer can already link to documentation for you. In our case, there are still
bits and pieces to fill specific to this screen.

38

Mobile System Design: Resourceful Engineering

In this section, we’ll go over some tips to make the integration process smoother. At the end of this
chapter, we’ll update the landscape again with new feature-specific requirements.

2.6.1 Align on about User sessions, environments, tokens, and timeouts

Once you start talking to a backend engineer about which environment to talk to, it will be hard to
avoid mentioning about login tokens and user sessions.

Be sure to cover that, get the necessary information tomake backend calls as soon as possible. Because
you’ll learn right here and now of any problems that you will run into later.

For example, maybe there isn’t a staging environment, or maybe that user account they made for you
doesn’t have the proper access that you need.

Or maybe you need to request user-permissions and the team approving it is slow. It’s better to know
these limitations earlier than later.

Ideally, you can already experiment by making an API call from the command line (such as by using
the cURL command line tool) and try to make it work. Then, if you have trouble integrating an API call
from the app client, you can verify if the cURL call will work. Saving you time since you can rule out if
the problem is on the backend or not.

Then there are more feature-specific features. Such as obtaining a login token, how can we get one
without a login screen (it’s not built yet).

Think about timeouts. Let’s say someone tries to complete a TODO item a�er being logged in too long.
Does that trigger a timeout? If so, what kind of errors will we get on timeouts?

If timeouts are a requirement, then most likely all API calls must work with this mechanic and the app
needs to respond to it, which can get complicated. Something to keep in mind.

2.6.2 Align on consolidating network calls

Regarding our feature, check if you want a single API call to populate the screen, or if you need tomake
multiple calls to get a populated screen. Multiple calls is easier for the backend, but might complicate
things for you since you have to combine them.

An argument to ask for a consolidated network call (assuming GraphQL isn’t an option) is to think
about multi-platform implications.

Let’s assume that you require multiple API calls to fill a screen you’re working on. Then the iOS app
needs to make some sort of logic to accommodate for this. This may be the same time investment for
backend, so it’s not enough to convince a backend engineer to take on this extra work. If you ask, you

39

Mobile System Design: Resourceful Engineering

might be told that it’s not an option and endpoints need to be pure and semantic. (Sometimes people
just don’t want or have time to do extra work, who knew?)

If bribing the backend developer with co�ee doesn’t work, consider shi�ing the conversation towards
time investments.

For instance, let’s saywe are alsomaking – or planning tomake – an Android app. It’s the same problem
again, except Android engineers now also need to invest time for this. Now let’s say we also make a
web client. It’s the same problem again.

If you’re going to make the same investment multiple times, it’s not that hard to convince a product
owner to push for making this investment once in the backend, as opposed to thrice on clients.

2.6.3 Be on the same page with errors

Next, consider how errors are handled. Will there be a single endpoint but with granular errors shown
for each data model? Or will you get one generic "something went wrong" error?

A common pitfall that sometimes gets overlooked, is ignoring the fact that backend-errors are localized
on the client. It may sound obvious, but experience shows that it can easily be forgotten when it comes
to handling errors.

For instance, sometimes a backend API will give plain English errors, such as “Could not load the user’s
TODOList”. Which is fine for us to help debug issues. However, this should not be customer-facing
text.

We need error codes. Because, as a client engineer we can localize them. As an example, we can turn
“error code 11” into “The TODOList couldn’t be loaded” for English, and “De TODO lijst kan niet worden
opgehaald” in Dutch.

As a result, you need to align with backend engineers on themeaning behind error codes. You can
propose a list where each code represents an error and their app translations.

2.6.4 It’s okay to deviate from backend custom error codes

A backendmay already have error codes, code 11 meaning “The TODOList couldn’t be loaded” or code
12 meaning “The user session has timed out”. But you don’t have to align them fully with backend,
because on top of backend error codes, you will also have client error codes related to the backend
call.

So keeping your error-codes in sync isn’t always possible.

40

Mobile System Design: Resourceful Engineering

For instance, maybe the backend will not give you an error, but then you try to parse the data and that
gives a client-specific error. Or, perhaps, the client will have a network timeout which isn’t necessarily
backend-specific.

So you will still need error-codes on top of the backend ones that are not shared by the backend.

2.6.5 Youmight be the backend guinea-pig

If you’re making the first client talking to the backend then the process is likelymuch slower, and you
have to take that into account.

In that scenario, you implicitly take on a second role, which is to be the backender’s betatester or
guinea-pig. You will be the first “customer” that will make use of a new untested, beta version of the
backend.

For instance, when implementing API calls, you may receive an error with a vague message. Or maybe
you’re treated with cryptic 500 errors. Either way, you will depend a lot more on a backend developer
to fix issues, before you canmove forward. As opposed to integrating the second or third client where
a lot of issues have already been ironed out.

O�en when you hit an issue during integration it will be unclear where a bug is; Is it a client bug or
backend bug? Now it probably takes at two people to debug it. You’d have to look at both the backend
and client to find the issue, which is quite a large scope of “The bug should be anywhere around these
parts.”

For this, cURL is a good tool to verify if the network call works well, even without a mobile client. So
you can narrow the problem-scope and establish (or rule out) there is a client problem.

Alternatively, let’s assume there already is a working Android app and now you’re making the iOS app.
If your iOS app has trouble communicating with backend, the scope of the bug is much narrower. You
know it’s most likely a bug on the iOS side since the Android app is already working.

When planning, take it into account whether you’re the first integrator; If you are the first integrator, as
a rule of thumb, you should double or triple the time it takes to integrate something.

2.6.6 Read code from other client implementations

If possible, you can considerably speed up your backend-integration by checking out the source from
other clients that already talk to the backend.

Verify if there already is a Web client or Android app or something else like a headless client (command-
line interface only). Inspect how they solved similar problems. A little web debugging goes a long
way.

41

Mobile System Design: Resourceful Engineering

It’s okay if the programming languages used are unfamiliar to you. As long as you’re able to get the gist
of it, you’ll be fine. There is no need to be afraid to ask for help, most engineers are excited to share
how they solved a similar problem.

2.6.7 Consider push notifications

Although not part of the UI, push notifications are part of the UX (user experience).

Wemight need to support certain messages, such as when a tutor le� you a newmessage, or when
you received a new schedule. Either way, there should be some way to inform the student.

To make push notifications work, we also need to think about registering a device for backend.

Pushmessages aren’t always localized in each app. If a users’ app is set to French, we should avoid
sending English push messages. It’s not a great experience, so you need some sort of mechanic to
submit a device’s language to the backend.

For push notifications to be localized, we need to send a user’s language settings to the backend.

Although this is not specific to our feature, this is relevant in most apps, so worth to keep in mind.

2.6.8 Feature-specific questions

Next, let’s think about feature-specific questions that we can ask to uncover secondary requirements,
such as:

• Which fields are optional?
• Will I get all data at once or do I need to assemble it?
• Howwill the app submit the TODO items?
• Assuming some TODO items are reset every 24 hours, how do we communicate this? Does the
backend knowwhich timezone we’re in, how?

– Maybe the client needs to send their current timezone?

• What format will we use? JSON, Graphql, Protocol bu�ers, something else?
• Which data is something that customers fetch every time? If so, maybe we can cache some
locally?

Depending on the context you can get as detailed as you want. Talk about security, caching, and so
forth. But note that at this stage, we haven’t implemented anything yet, so it’s good to get a big picture,
but don’t get lost in the details at this stage.

42

Mobile System Design: Resourceful Engineering

2.6.9 Updating the landscape with backend requirements

We learn that a few things from this screen will be fetched; The TODO elements, the tutor’s profile (with
its callout message), and the schedule information. All these need some form of network (API) calls.

Even though we knowwe need an API for the network calls, at this stage we don’t have to worry about
the implementation details yet. So we can add it to the landscape graph andmark it as dashed (to be
figured out later).

2.7 You are the link between backend and design

Even if you are on the same team that regularly has standups. As a client engineer, misalignment
details andmisunderstandings will come out during your work. Because the designer(s) and backend
engineer(s) might share only general information during team-meetings, or they may work in silos, or
they might be working out the details in their own domains and only mention those to you. Now you’ll
be connecting the backend APIs to the UI, making you the missing link between them.

There will probably be somemisalignments because of this, and it’s best to assume it’s your job to
catch these misalignments early on a detailed level.

Try to think of all data that needs to be communicated and how that reflects in the UI. Try to find those
edge-cases.

Optionality is a big one. It’s a small thing to say “A namemay ormay not be filled in”, but if the designer
assumes data is always present then it might break the UI.

Or vice versa, a backendermightmakewrong assumptions about the data. For instance, theymay think
a tutor will always have a full name, but it might not match the customer’s and designer’s expectations.
Maybe some tutors use aliases and the backend engineer wasn’t aware. Now they have to update the
codebase, APIs will return di�erent values, documentation needs to be updated, and so on.

43

Mobile System Design: Resourceful Engineering

To emphasize: you are the link between backend and design andwill be the one uncoveringwrong
assumptions. Findmisalignment nowat the early phase, as opposed to later during implementation.

2.8 Closing thoughts

We’ve only received one screen, yet there is already a ton to consider. By taking some extra time to
think we have a more rounded idea of what to make, resulting in a landscape graph which we can use
to express the components and domains of our architecture.

This approach might be overkill for a personal hobby project. But I hope you have gotten some useful
points out of it that apply in a regular work setting.

Even though we didn’t start programming right away, in the end it’s about saving time and working on
the right things. It’s better to save time upfront than implement code and having to refactor most of it
because we didn’t plan accordingly.

In the next chapter we will actually start implementation, which is where the real fun begins.

2.9 The takeaways

In this chapter, we covered:

• Try to understand the problem better before starting to code.
• Drawing a graph with limited information helps design a component landscape.
• That it’s okay to not have all the answers at this stage.
• Talk in terms of time investments, not in what you should / shouldn’t implement.
• If the feature already exists on another platform, talk to developers of that platform and ask to
inspect their code.

• Aligning about optional data impacts both the data model and the design.
• Check if timeouts impact your feature. Such as staying logged-in too long.
• Ask what errors you can expect.
• Check if partial errors are an option, such as partially loaded data. This impacts both network
calls and design.

• You are the link between backend and design. Save lost time by and findmisalignments in this
phase.

Design

• A design is a communication tool, not a representation of the final product.

44

Mobile System Design: Resourceful Engineering

• Try to uncover hidden requirements and functionalities that are not clear from the design.
• Verify if there are pre-existing components that you can use.
• Communicate with a designer on what to prioritize and what can be skipped.
• A design usually encompasses a best-case scenario. Be sure to ask for a design with real-world
data.

• Find hidden requirements and edge cases by trying to break the designs.
• Always be kind and gentle when critiquing designs.

Backend

• Align on user sessions and user tokens
• Check if non-UI features impact your feature. Such as notifications, that is part of the UX, but not
UI, and is aligned with backend engineers.

• If you’re the first implementer of a backend API, assume that you’re also going to be its tester.
Adjust your planning for this.

• Steer towards error-codes, not string-based errors supplied by the backend.
• Align on consolidating network calls. Maybe you canmake your life easier by receiving a single
network call.

45

